MATH 10550, EXAM 1 SOLUTIONS

1. Evaluate the following limit

$$
\lim _{x \rightarrow 0} \frac{2-\sqrt{4-x^{2}}}{x^{2}} .
$$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{2-\sqrt{4-x^{2}}}{x^{2}} & =\lim _{x \rightarrow 0} \frac{2-\sqrt{4-x^{2}}}{x^{2}} \cdot \frac{2+\sqrt{4-x^{2}}}{2+\sqrt{4-x^{2}}}=\lim _{x \rightarrow 0} \frac{4-\left(4-x^{2}\right)}{x^{2}\left(2+\sqrt{4-x^{2}}\right)} \\
& =\lim _{x \rightarrow 0} \frac{1}{2+\sqrt{4-x^{2}}}=\frac{1}{4}
\end{aligned}
$$

2. For which value of the constant c is the function $f(x)$ continuous on $(-\infty, \infty)$?

$$
f(x)= \begin{cases}c^{2} x-c & x \leq 1 \\ c x-x & x>1\end{cases}
$$

Solution. The partial functions of $f(x)$ are continuous for $x<1$ and $x>1$ because they are polynomials. To get $f(x)$ continuous on $(-\infty, \infty)$ we need

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)
$$

or at $x=1, c^{2} x-c=c x-x$. This happens when $c^{2}-c=c-1$. Rearranging gives $0=c^{2}-2 c+1=(c-1)^{2}$ and $c=1$.
3. Given that f and g are differentiable at $x=3$ and that $f(3)=2$, $g(3)=-1, f^{\prime}(3)=-4$ and $g^{\prime}(3)=3$, what is $\left(\frac{f}{g}\right)^{\prime}(3)$?
Solution. By quotient rule,

$$
\left(\frac{f}{g}\right)^{\prime}(3)=\frac{f^{\prime}(3) g(3)-f(3) g^{\prime}(3)}{(g(3))^{2}}=\frac{-4 \cdot(-1)-2 \cdot 3}{(-1)^{2}}=-2 .
$$

4. For $f(x)=\sqrt[3]{x^{5}}+\frac{6}{\sqrt[5]{x^{3}}}$, find $f^{\prime}(x)$.

Solution. $f(x)=x^{5 / 3}+6 x^{-3 / 5}$. Thus

$$
f^{\prime}(x)=\frac{5}{3} x^{2 / 3}+6\left(-\frac{3}{5} x^{-8 / 5}\right)=\frac{5 \sqrt[3]{x^{2}}}{3}-\frac{18}{5 \sqrt[5]{x^{8}}}
$$

5. Find the equation of the tangent line to $y=\sqrt{x^{2}-1}$ at the point $(2, \sqrt{3})$.
Solution. $\quad \frac{d y}{d x}=\frac{x}{\sqrt{x^{2}-1}}$ by the chain rule.
Then at $(2, \sqrt{3})$ the derivative of y is $\frac{2}{\sqrt{3}}$. This gives us the slope of the tangent line. So the equation of the tangent line at $(2, \sqrt{3})$ is given by

$$
y-\sqrt{3}=\frac{2}{\sqrt{3}}(x-2) .
$$

By simplifying, we have

$$
y=\frac{2}{\sqrt{3}} x-\frac{1}{\sqrt{3}} .
$$

6. Compute

$$
\lim _{x \rightarrow \pi / 2+} \tan x .
$$

Solution. From the graph of $y=\tan x$,

$$
\lim _{x \rightarrow \pi / 2+} \tan x=-\infty
$$

7. Find the derivative of

$$
f(x)=x^{2} \cos \left(\sqrt{x^{3}-1}+2\right) .
$$

Solution.

$$
\begin{aligned}
f^{\prime}(x) & =2 x \cos \left(\sqrt{x^{3}-1}+2\right)+x^{2} \frac{d}{d x} \cos \left(\sqrt{x^{3}-1}+2\right) \text { (Product Rule) } \\
& =2 x \cos \left(\sqrt{x^{3}-1}+2\right)-x^{2} \sin \left(\sqrt{x^{3}-1}+2\right) \frac{d}{d x}\left(\sqrt{x^{3}-1}+2\right) \text { (Chain Rule) } \\
& =2 x \cos \left(\sqrt{x^{3}-1}+2\right)-\frac{x^{2}}{2 \sqrt{x^{3}-1}} \sin \left(\sqrt{x^{3}-1}+2\right) \frac{d}{d x}\left(x^{3}-1\right) \text { (Chain Rule) } \\
& =2 x \cos \left(\sqrt{x^{3}-1}+2\right)-\frac{3 x^{4}}{2 \sqrt{x^{3}-1}} \sin \left(\sqrt{x^{3}-1}+2\right) .
\end{aligned}
$$

8. If $f(x)=x^{2} \cos x$, find $f^{\prime \prime}(x)$.

Solution. Using Product Rule, we get

$$
\begin{aligned}
f^{\prime}(x) & =2 x \cos x-x^{2} \sin x \\
\text { and } \quad f^{\prime \prime}(x) & =2 \cos x-2 x \sin x-2 x \sin x-x^{2} \cos x \\
& =2 \cos x-4 x \sin x-x^{2} \cos x
\end{aligned}
$$

9. A ball is thrown straight upward from the ground with the initial velocity $v_{0}=96 \mathrm{ft} / \mathrm{s}$. Find the highest point reached by the ball. Hint: The height of the ball at time t is given by $y(t)=-16 t^{2}+96 t$.
Solution. Velocity of the ball at time t is given by

$$
v(t)=y^{\prime}(t)=-32 t+96
$$

The ball reaches the highest point when $v(t)=0$, i.e. when $t=3$ seconds, so the height of the ball at 3 seconds is

$$
\begin{aligned}
y(3) & =-16(3)^{2}+96(3) \mathrm{ft} . \\
& =-144+288 \mathrm{ft} . \\
& =144 \mathrm{ft} .
\end{aligned}
$$

10. Find the limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x}
$$

Solution.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x} & =\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x} \cdot \frac{1+\cos x}{1+\cos x} \\
& =\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x \sin x \cdot(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x \sin x \cdot(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x \cdot(1+\cos x)} \\
& =\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{1+\cos x} \\
& =1 \cdot \frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

11. Find the equation of the tangent line to the curve $y=\frac{x^{3}}{3}-x^{2}+1$ which is parallel to the line $y+x=4$.

Solution. The line parallel to the line $y+x=2$ will have the same slope, namely -1 . So we need to find the point on the curve which has slope -1 . $y^{\prime}=x^{2}-2 x$. We solve for x given $y^{\prime}=-1$:

$$
x^{2}-2 x=-1 \Longrightarrow(x-1)(x-1)=0 \Longrightarrow x=1
$$

Plugging into the equation for the curve we see that $y=1 / 3$ at this point. The tangent line at $\left(1, \frac{1}{3}\right)$ is given by

$$
y-\frac{1}{3}=-(x-1)
$$

or

$$
y=-x+\frac{4}{3} .
$$

12. Show that there are at least two roots of the equation

$$
x^{4}+6 x-2=0 .
$$

Justify your answer and identify the theorem you use.
Solution. Let $f(x)=x^{4}+6 x-2$. Then $f(-2)=2, f(0)=-2$ and $f(1)=5$. Since $f(x)$ is a polynomial, f is continuous on the real line. We have $f(-2)>0>f(0)$. So, by the Intermediate Value Theorem, there exists a number c between -2 and 0 such that $f(c)=0$. Similarly, there exists a number d between 0 and 1 such that $f(d)=0$.

Note: The choices $x=-2,0,1$ are not the only possibilities.
13. Given

$$
y=\frac{1}{x^{2}+1},
$$

find y^{\prime} using the definition of the derivative.

Solution.

$$
\text { Let } \begin{aligned}
f(x) & =\frac{1}{x^{2}+1} . \\
\text { Then } y^{\prime}=f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}+1}-\frac{1}{x^{2}+1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+1\right)-\left((x+h)^{2}+1\right)}{\left((x+h)^{2}+1\right) \cdot\left(x^{2}+1\right)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\not x^{2}+\nmid-\not x^{2}-2 x h-h^{2}-\nmid}{h\left((x+h)^{2}+1\right)\left(x^{2}+1\right)} \\
& =\lim _{h \rightarrow 0} \frac{\not h(-2 x-h)}{h\left((x+h)^{2}+1\right)\left(x^{2}+1\right)} \\
& =\lim _{h \rightarrow 0} \frac{-2 x-h}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)} \\
& =\frac{-2 x-0}{\left((x+0)^{2}+1\right)\left(x^{2}+1\right)} \\
& =-\frac{2 x}{\left(x^{2}+1\right)^{2}} .
\end{aligned}
$$

